
Overplotting: Unified solutions under Abstract Rendering

Joseph Cottam and Andrew Lumsdaine
Indiana University

Center for Research in Extreme Scale Technologies (CREST)
Bloomington, IN, USA

{jcottam,lums}@indiana.edu

Peter Wang
Continuum Analytics

Austin, TX, USA
pwang@continuum.io

Abstract—It is impossible to directly visualize all of the
items of a large dataset at once. Often, the number of items
exceeds the number of pixels. Since direct representation is not
a reliable option, a variety of methods have been developed
for dealing with indirect representation. Such methods include
clustering and intelligent filtering to reduce the number of
items being considered in the first place. However, these tech-
niques impose a high computational and interpretation costs.
The alternative is to employ techniques to directly deal with the
over-plotting that occurs. that occurs when there are too many
items to display without overlapping. Over-plotting techniques
include alpha composition, color weaving and selective plotting.
Each of these has variants that yield different cognitive or
computational optimizations. Unfortunately, most advanced
over-plotting techniques are wrapped up in specific libraries.
Experimenting with different techniques is cumbersome be-
cause they have not been provided with uniform interfaces or
in a single runtime. This paper presents Abstract Rendering,
a recasting of the rendering process that enables concise
expression of many over-plotting techniques. Furthermore,
the Abstract Rendering formulation yields efficient execution
strategies. Combined, it is practical to explore different over-
plotting techniques for large data without requiring significant
alteration to existing pipelines.

Keywords-Rendering, Overplotting, High-Definition Alpha
Composition

I. INTRODUCTION

Visualization transforms source information into a set of
pixels. The info-vis reference model (Figure 1) provides a
vocabulary for discussing that transformation [1]. Informa-
tion visualization frameworks tend to focus on the Visual
Mappings stage, where raw data is projected into a set of
geometrical abstractions, and graphics are represented with
high precision on a logical canvas. Conversion to actual
pixels is given significantly less attention. Many frameworks
simply offload the view transforms and related rasterization

Visual
Abstraction

Data
Transforms

Visual
Mappings

View
Transforms

Data
Tables

Source
Data Views

Figure 1. Information visualization reference model [1].

(a) Over-plot (b) StandardAlpha (c) HDAlpha

Figure 2. Cluster-based arrangements of Sourceforge.net social network
nodes under various rendering conditions.

Reduced Pixels

Underlying Distribution

Figure 3. One-dimensional distribution and reduction.

to external graphics libraries (such as an SVG renderer,
OpenGL, or Java2D). Efficient transfer to the underlying
engine is often the only consideration discussed. Abstract
Rendering expands control over what occurs in the View
Transform stage of the info-vis reference model.This control
enables direct and simple discussion of render-time effects
pertinent to visualization construction.

Consider the examples in Figure 2. The plot contains
27,500 points, representing the social network formed at
surrounding Sourceforge.net circa 2007. (A more complete
description of the datasets and its treatment is found in
Section II.) With each node allocated a three-by-three space,
there are insufficient pixels to display this dataset in less
than a 500 by 500 pixel region, regardless of layout. Since
data layout is usually not a fully regular tiling of a space,
treatment of even this modest dataset encounters over-

plotting. Figure 2a shows 100% opaque squares, giving
the rough distribution of the clusters in the data but with
significant over-plotting leading to occlusion. When over-
plotting is present, the rendered plot conveys presence/ab-
sence distribution information, which is a bound on the
actual distribution and not a full description. This is not
necessarily undesirable, but it is a silent transition of plot
type that is not represented in the visual mappings. The
issue of silent transitions is compounded by the fact that
the visual mappings are often presented as the definition
of a visualization [2]–[6]. A common approach to mediate
data loss due to over-plotting is to use alpha compositing,
providing more complete distribution information on a per-
pixel basis as an emergent effect (Figure 2b). In this minimal
treatment, the highest peaks are still over-saturated and
the lowest troughs are indistinguishable from empty. In
many cases, this over-saturation is partially determined by
hardware constraints and outside of the scope of control of
traditional visualization frameworks. Taking into account the
actual quantities in the most saturated pixel, Figure 2c accu-
rately represents the whole dynamic range while persevering
minimum visibility on the least-saturated pixel.

Abstract Rendering provides direct access to many over-
plot-related techniques by exposing the rasterization and
implicit binning process that occurs when rendering to pixels
(see Figure 3). Succinctly, Abstract Rendering constructs a
synthetic data space that is informed by both geometric data
representations and render-related rasterization. It logically
proceeds in two phases. The first phase is the creation of a
synthetic data space between the geometric representations
and the raw pixels of an image. The second phase is
application of transformations to that synthetic space to
create an image.

This first phase is analogous to traditional rendering but
no restriction is placed on the topology or content of the
rendering (where traditional rendering produces regular rect-
angular grids of colors). To be effective, the synthetic space
must provide new affordances to analysis that neither the raw
data, pixels, or geometric constructions do by themselves.
The ability to compute the full range of overlap is one such
affordance (discussed earlier with respect to Figure 2).

The fundamental observation is that individual pixels
represent raw data by way of a synthetic space built out of
(but not identical to) the geometric representation. Abstract
Rendering (1) reifies this synthetic space and (2) provides
tools for working with that space. The system is named
Abstract Rendering because it computes a discretized result,
much like standard rendering, but the discrete values do not
need to be colors (and are thus more abstract than colors).

II. ABSTRACT RENDERING

Abstract rendering is done by chaining together four
different function types. The four function types are (1)
select, (2) info, (3) aggregate, and (4) transfer. The first three

Figure 4. Categorical treatment of Sourceforge.net social network nodes.

functions are used to create an initial synthetic data space.
This synthetic data space is derived from the source data
and the geometric data. The select function picks geometry,
the info function processes individual geometric items, and
the aggregate function combines info values together. An
effective synthetic data space enables efficient analysis,
performed by the transfer function. These four functions will
be described in greater detail in turn through the evolution
of an example visualization.

A. Dataset
The example dataset comes from a social network analysis

of the open source community surrounding Sourceforge.net
circa 2007. Each project is a node in the network and
each developer is a link. The largest connected component
(27,500 projects) was laid out using VxOrd [7]. This layout
was used to visually assess the interactions between the
social network and various project attributes as part of an
exploratory analysis [8].

Figure 2 shows various renderings of just the project
nodes, encoded as red squares. The naive treatment of
100% opaque squares (Figure 2a) demonstrates the rough
distribution of the clusters in the data. However, it does not
show density inside of the clusters. Figure 2b shows a simple
alpha-treatment (alpha set to 1%). In this minimal treatment,
the highest peaks are still over-saturated and the lowest
troughs are visually indistinguishable from empty. Shifting
to 25% alpha on each node yields improved definition in
the low-population areas, but at the cost of significant over-
saturation in the highest peaks. Abstract Rendering enables
an accurate treatment of this data.

B. Simple Example: Select, Aggregate, Transfer
As mentioned, the original dataset is being represented

as colored squares. Abstract rendering accepts these squares

as input. The basic task for an accurate transparency-based
representation of the data is to count how many items land in
each pixel, then to create a color ramp that handles the entire
range of counts. This pixel-level analysis and scale creation
is know as high-definition alpha composition (HDAlpha) [9].

For high-definition alpha composition, the synthetic data
space is a pixel-level grid of the number of items that land
on each pixel. This grid of counts is directly constructed
by first selecting all the items that land on a pixel and,
second, counting the number of items that are selected.
In terms of the four functions in Abstract Rendering, the
selector is the “intersects” function, which selects all of
the items that intersect a given pixel. The aggregator is
the “length” function that counts the number of items in a
list. (The “info” function will be addressed later.) Applying
length(intersects(x, y,G)) for each pixel in the image
will result in the required synthetic data space. (Where x, y
indicate a single pixel of the screen projected into the logical
canvas that the glyphs occupy and “G” is the geometric
representation of the source data.)

The synthetic data space can be directly analyzed to
find the minimum and maximum intersection values.
A color ramp can be built between those two values
and directly applied to the synthetic data space.
Building and applying this color ramp is the task
of “transfer,” the fourth Abstract Rendering function.
interpolate(s,Red.10, Red,min(S),max(S)) therefore
supplies the color for each pixel (“Red.10” is red with 10%
alpha, S is the synthetic data space and s is an item in S).
Applying the Abstract Rendering process yields the image
shown in Figure 2c. This avoids over-saturation in the
highest peaks, while guaranteeing visibility of the lowest
troughs (shown at 10% alpha). The result is a correct image
of the distribution of the nodes of the social network.

C. The Info Function

In the preceding example, the “info” function was not
specified because it was not required. The count of the
values was the point of concern. Trivially, the same en-
coding can be created by using an info function of id
that returns whatever it is passed (i.e., id(x) = x∀x).
Using id for the info function, the synthetic space creation
is done by length(id(g)|g ∈ intersects(x, y,G)). Recall-
ing the original problem, each Sourceforge project has
various attributes associated with it. The “info” function
slot enables a more detailed representation that includes
those attributes. Assuming the attribute is stored with
the geometry in G and encodes the programing language
with the values “Python”, “C/C++”, “Java,” and “Other”,
a more detailed synthetic data space can be made with
countCategories(att(g)|g ∈ intersects(x, y,G))). In this
phrasing, “att” returns the attribute value and “countCate-
gories” creates a list of the unique values seen paired with

how often they are seen. Applying a category-aware transfer
function, the image in Figure 4 results.

D. Formalization

Abstract Rendering can be compactly described as the
application of four functions, combined in the following
fashion:

sxy = Aggregate({Info(g)|g ∈ Select(x, y,G)})
cxy = Transfer(sxy)

In this formulation all (x,y) values refer to positions on
the screen and must match up between the two equations
to color a single image pixel. Furthermore, G represents
all glyphs with g ∈ G, sxy represents a value in the
synthetic data space and cx,y is a final pixel color. Each of
the component functions may require additional arguments
(such as “interpolate” needing the high color, low color, min
value and max value). When required in further discussion,
these will be included in line. In general, the first of these
equations will be referred to as the synthesis step, while the
second will be called the transfer step.

The final Sourceforge image as seen in Figure 4 is
produced with the following abstract rendering equations:

sxy = countCategories({att(g)
|g ∈ intersects(x, y,G)})

s′xy = ReKey(sxy,

{Python : Green,C/C ++ : Red, Java : Blue, ...})
cxy = HDAlpha(s′xy, S

′)

Where ReKey replaces the keys of a dictionary with the
keys found in a new dictionary and where HDAlpha
expects a set of colors as its first argument and a set that
includes the most extreme values that will be encountered
as its second. As seen above, sometimes it is convenient to
construct multiple synthetic data spaces. In such cases, there
are multiple instances of the transfer step, but the overall
concepts remain the same.

To simplify further discussion, a few auxiliary concepts
need to be defined. By convention, sets of items will be
denoted by upper-case letters while members of a set will
be denoted by the same lower-case letter and a subscript.
(so sxy indicates a member S). Related, any x/y value will
refer to a pixel position. Some abstract rendering systems
involve complex functions. These will be constructed via
function composition. To facilitate composition of functions
that take multiple arguments, this paper employs partial
application, indicated by square-braces. Arguments to be
supplied later are filled with �. When partial application is
used, a new function is produced with the same number
of arguments as holes. For example, for function F (a, b, c),
the statement F [1, �, 3] yields a new function F ′(b). F ′(2)
executes exactly as F (1, 2, 3). To preserve generality, this

Figure 5. US Census tracts reporting at least 10% reporting “other”
selected and plotted pure black.

paper assumes that partial application occurs on a per-pixel
basis (i.e., once per sxy). This simplifies the definition of
some functions.

III. EXAMPLE ABSTRACT RENDERING ENCODINGS

The general Abstract Rendering form can be used to
describe many different techniques for overplotting. This
section provides the equations for several existing tech-
niques. Example figures provided in this section are derived
from tract-level population and race data found in the 2010
US Census [10]. Unless noted, blue represents Caucasian
descent, green represents African American descent, red for
Native American descent and grey for all others.

A. Overplotting
sxy = color ◦max[′Z, �]({id(g)

|g ∈ intersects(x, y,G)})
cxy = id(sxy) (Overplot)

Basic overplotting occurs when pixels colors are assigned
on a last-write-wins basis. To achieve overplotting in the
Abstract Rendering framework, an ordering basis must be
established. In the equation shown above, the ordering basis
is the Z-value of the glyphs. The information function selects
the color and the Z from each glyph, the reduction picks the
color of the glyph with the largest Z value. The resulting
aggregate-set is a list of colors. This equation is used for
Figures 2a and 8a.

B. Selection-set Rendering
sxy = RLE ◦ Sort[′sel, �]({Id(g)

|g ∈ intersects(x, y,G)})
cxy = SubstOn[�,′ Sel, red,′ Color](sxy) (Selection)

While simple overplotting relies on a pre-arranged or-
dering of items, a more complex form of overplotting may
use a function to decide which items to keep on top. In a
traditional framework, this effect can be achieved by setting
the z-order attributes. However, in Abstract Rendering it
can be done in the final stages of the rendering pipeline. A

Figure 6. US Census tracts with all race information combined to form a
net population map.

common case for this is type of rendering prioritization is to
keep selected values visible, as is done in Figure 5. Equa-
tion Selection realizes this type of prioritization, provided
the glyph-set has a sel field that indicates which entries
are selected. The RLE function computes a “Run Length
Encoding”, changing a list of values into a list of categories
and the number of times they occur and in the order that
they occur. In the most general case RLE, the list of values
can have repetitions (just not consecutively). However, since
RLE is composed with sort in Equation Selection, the
result is a list of unique values and their respective counts.
Counts are sorted with respect to the sel field. This phrasing
also relies on a SubstOn(switch, val, alt, tuple) which is
a wrapper around an if . If the field indicated by switch is
true, then val is returned, otherwise the value of the field in
the tuple indicated by alt. A lookup function to a separately
maintained selection index could be used in place of the Sel
field.

C. Uniqueness in Neighborhood
sxy = color({min[count] ◦RLE ◦ sort(g)

|g ∈ neighbors(x, y,G)})
cxy = id(sxy) (Unique)

Selection set rendering applies a context-oblivious prior-
itization function. The items being of a particular pixel are
all that are required to determine how to actually render
the pixel. Equation Unique shows how to pull the most
unique item to the front on each pixel. This type of screen-
space calculation is very difficult to encode using more
standard Visual Encodings since the visual encoding is
directly influenced by the view transform.

D. Homogeneous Alpha Compositing
sxy = count({id(g)|g ∈ intersects(x, y,G)})
cxy = interpolate[low, high, S, �](sxy) (HomoAlpha)

Instead of selecting which item to render on a particular
pixel, blending the items of a pixel is a common technique.
Alpha composition is the most common expression of blend-
ing.

Figure 7. US Census Map with race data stratified and then composed.

Homogenous alpha composition occurs whenever all ren-
dered items have the same visual representation. It is
used to produce density representations (like those in Fig-
ures 2c and 6). The synthetics-set is made by counting the
glyphs that intersect each pixel (using the count function).
The interpolate function then interpolates from the low
value to the high value. The full synthetics-set (S) is
used to establish the low and high input values. Working
with the counts directly enables more fine-grained control
over the interpolation, avoiding issues of unknowingly over-
saturating the alpha-buffer. Therefore, the Abstract Ren-
dering representation is trivially able to implement high-
definition alpha composition [9].

E. High-definition Alpha Compositing

sxy = RLE[′Z, �]({sort[′Z, �](g)
|g ∈ intersects(x, y,G)})

cxy = αcompose ◦ scale[S](sxy) (HighAlpha)

Full high-definition alpha composition extends the con-
cern of buffer over-saturation seen in homogenous alpha
composition to both the alpha and the color buffers. As
with homogenous alpha composition, the key is to measure
the extrema before apply the interpolation function. In
Equation HighAlpha, the αcompose function implements
standard alpha composition [11]. The scale function is a
placeholder for the chain of functions that does the range
measurements and interpolation for eventual composition in
αcompose. Details on these range calculations and scalings
can be found in earlier work [9], [12]. The necessary
range information is derived from the synthetic-set (S).
Equation HighAlpha equation is applied in Figures 7 and 8b.

High-definition alpha composition can be modified by
sorting on the output color or a data field to achieve
‘stratified’ alpha composition. This stratification can be used
to emphasize particular values in the plot (since alpha
composition is order dependent) or provide more efficient
rendering (for example, WebGL often performs faster when
fewer pen-color changes).

F. Color Weaving
sxy = RLE({Sort ◦ Color(g)|g ∈ intersects(x, y,G)})
cxy =Weave[S, x, y, �](sxy) (Weave)

Color weaving takes an alternative tack to representing
more than one item in a space than alpha composition.
Rather than blending colors in one pixel, it represents a
mosaic pattern of the original source colors throughout the
space. The crux of the Abstract Rendering encoding shown
in Equation Weave is the Weave function, which is directly
derived from the definition in Haleh, et al [13]. Using
the two-phases of Abstract Rendering more completely, an
alternative weaving implementation would defer actual color
selection until transfer. In this alternative implementation,
the categories would be woven instead of the colors them-
selves.

IV. APPLICATIONS

The social network at Sourceforge and the USCensus were
used earlier as set examples. However, neither represented
particularly large dataset. This section provides two addi-
tional applications with larger datasets.

A. Memory Access Patterns

Abstract Rendering framework was applied to visualizing
memory access in the Boost Graph Library (BGL). The BGL
is a template-based C++ library for graph analysis. In graph
analysis problems, memory access patterns are driven by
the data present, and thus not amenable to many standard
memory access optimizations. This is in contrast to matrix
problems where accesses tend to be statically analyzable.
In fact, mediated by the several layers of abstraction in the
BGL, the actual access patterns were not well understood.
In an attempt to further optimize the BGL, access patterns
were recorded and analyzed. This section presents a portion
of that analysis. (Preliminary analysis made it possible to
determine where the program and various auxiliary data
structures resided. These considerations have been omitted
from this discussion.)

Figure 8 presents two treatments of the memory access
data. In both cases, a single memory access is depicted as
a point on the screen. There are 930,000 memory accesses
presented. If the memory value was already in L2 or higher
cache, the point is colored blue (a cache hit), otherwise
it is colored red (a cache miss). Figure 8a is a naive
projection that accepts the default iteration ordering via
overplotting (see Section III-A) . In contrast, Figure 8b
shows a full high-definition alpha treatment of the data
(see Section III-E). This second image displays the subtlety
of the memory access patterns, showing that a mixture of
hits and misses is common but making some areas of near
100% hit or miss clear. Examining these two images, and
other renderings based on percentage thresholds, helped the
analysts understand the memory access patterns.

(a) Overplot

(b) High-Definition Alpha

Figure 8. Extreme treatments of BGL memory accesses patterns.

An important benefit of Abstract Rendering is the ability
to change the transfer function but re-use the results of
the synthesis step. On a Macbook Air, switching between
transfer functions that do not consider the neighborhood
required an average of 43ms for 500 by 500 pixel images
and scaled with the number of pixels to 120ms for 1500
by 1500 pixel images (sizes tested at increments of 100
pixels and average of 10 executions). This enabled rapid
comparison between many different treatments. Because
transfer functions work on the results of the synthesis, not
on the original input, the response level was independent of
the input data size.

Figure 9. Adjacency matrix of the Kiva dataset with density log
transformed.

B. Network Adjacency

The second dataset is a collection of 37 million trans-
actions from the Kiva micro-finance site. Each transaction
represents a monetary transfer between a lender, borrower,
or intermediary. Each actor was given an identifier, with
senders placed on the x-axis and receivers placed on the
y-axis. Each transaction is represented as a point at the
intersection of the sender and receiver. The coloring was
done by log-transforming the counts of items contained in
each pixel. The final visualization is shown in Figure 9 and
the Abstract Rendering treatment is based on the one given
in Section III-D.

As with the memory visualization presented earlier, the
final visualization was not the only option explored. Signifi-
cant overplotting prevents standard alpha techniques from
being effective. At a 10% alpha level, over 50% of the
screen is over-saturated. A linear transform is also ineffective
because of an extremely skewed in the distribution (half of
the transactions appear in the upper-left quadrant). Changing
between the different transfer functions remained as respon-
sive as the BGL examples, despite over 40 times more data
in the Kiva dataset than in the BGL memory dataset.

For both the BGL and Kiva datasets, Abstract Render-
ing enabled rapid exploration of multiple representation
techniques. In both cases, several encodings not presented
here were constructed and compared. Construction typically
consists of instantiating the relevant functional units from
the library, typically just four lines of code (one for each
function category). Comparison the proceeded through a
simple utility that allowed the pre-coded combinations to
be selected interactively. This breadth of exploration was

not possible under other visualization frameworks because
they lacked the ability to succinctly express the differences
between the different overplotting treatments.

V. IMPLEMENTATION

The ability to interactively switch between different Ab-
stract Rendering encodings is a signifiant advantage of
Abstract Rendering over other libraries. Efficiency changing
rest directly on implementation decisions.

Abstract Rendering has been implemented in Java and
Python. This section describes the implementation in Java.
The Python implementation is similarly structured, but
differs in the parallelization strategy (relying heavily on
vectorization through NumPy [14]).

The Abstract Rendering implementation follows the def-
inition provided in Section II. Aggregate, info, and transfer
functions are directly represented, though aggregate func-
tions are slightly modified to provide efficient execution in
out-of-core environments.

The select function is replaced with a “Renderer” class
that controls the overall data access order. This includes
access not just to the underlying dataset (as the select
function implies) but also to the aggregate values (i.e., the
order and frequency that the x/y values appear in). Renderers
fall into two general categories: by pixel and by glyph. By-
pixel renderers perform selection essentially as described in
Section II. This strategy is efficient when used with datasets
that are spatially arranged (such as a quad-tree). Any given
glyph will be accessed once for each pixel the glyph touches.
Many data structures do not efficiently handle the highly
spatial nature of these queries and thus a pixel-oriented
rendering strategy is not effective.

A glyph-based rendering strategy takes the opposite tack.
Each glyph is visited exactly once, and each pixel may
be updated multiple times. This enables efficient rendering
when using non-spatial data structures because each glyph
is visited in an order convenient to its container. However,
the different iteration order means that synthetic values (i.e.,
the sxy values) are typically updated multiple times. The
aggregation function does not receive a list of info function
results (as described in Section II). Instead it receives one
info result and a pre-existing aggregate value. To compensate
for this difference, aggregate functions must provide a “zero”
value and must be commutative/associative (if deterministic
execution is desired). The “zero” is used to initialize the
synthetic data space. (When presented with a list of info
results, the operator receives all of its operands “at once”
and thus commutativity and associativity are not significant.)

The implementation supports a number of parallelization
strategies and data configurations. A full analysis is beyond
the scope of this paper. In brief, thread-level parallelism
and vector-based parallelism have been explored. GPU,
distributed memory and streaming data configurations have
also been investigated. All use the components described

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

1	 2	 3	 4	 5	 6	 7	 8	

Ru
n$

m
e	
(m

s)
	

Core	 Count	

Run$me	 vs	 Core	 Count	

Wikipedia	 (153M	 entries)	
Kiva	 (37M	 entries)	

Figure 10. Scaling behavior of Abstract Rendering as processor count
increases. Scaling behavior is near linear as processors as are added, but
shows no additional improvements with hyper-thread processors (processors
8-15 are hyperthreads and improve by less than 5% vs. 8 cores).

above, augmented with various helper functions to facilitate
data access or partial result combination. The out-of-core
configuration is used in performance analysis (Section VI)
and to handle the Kiva data set (Section IV-B).

VI. PERFORMANCE

Section III described several Abstract Rendering phras-
ings, demonstrating its expressive capabilities. To be practi-
cal, the framework must be performant as well as expressive.
An simple characterization of runtime performance was
done with an eight physical core machine. Two adjacency
matrix visualizations were used. The first was the Kiva
dataset described Section IV-B. The second dataset is an
adjacency-list of links found on Wikipedia, receiving the
same treatment. The Wikipedia data set includes 153 million
edges, representing the links of the largest connected cluster
if the category system is ignored. Both data sets were binary-
encoded adjacency-lists stored in a memory mapped file. The
file contents were streamed off disk and rendered in a glyph-
parallel strategy. These datasets were used because the data
volume is sufficient to require out-of-core processing but
require simple analysis to create a visual representation.

Figure 10 presents the average performance over 10
executions while keeping the core count fixed. In general,
more processors are more helpful, but hyperthreading is
not. The scaling characteristic is similar between the two
datasets, but the difference shows the overhead of abstract
rendering in general. Even though this Wikipedia data set is
four times larger than the Kiva data set, the overall runtime
is only three times longer, on average.

Overall, the performance numbers are generally support-
ive of interactive visualization applications.

VII. FUTURE WORK

Current Abstract Rendering implementations closely tie
the bin-elements with the display resolution and region. This
decision introduces view-dependent effects. View-dependent
effects are used advantageously in high-definition alpha
composition, but may not always be desirable. Developing
techniques for avoiding these effects and guidelines for their
usage is an ongoing effort.

Section V described implementation considerations. There
are several unexplored options that may lead to more
efficient implementations, or to implementations that run
in more complex runtime environments. Options include
distributed memory or efficient GPU execution. The idea
of binning is shared inMens [15].

Abstract Rendering can be applied to more than just
overplotting. High-definition alpha composition rests on the
idea of measuring pixel-level information. This same idea
can be applied to screen-space metrics for visualization eval-
uation [16], [17]. Such applications are also being explored.

The idea of the transfer function comes from scien-
tific visualization. However, years of research into transfer
functions has yielded many interesting techniques. Mixed
rendering styles, and context-aware highlighting are strong
candidates for exploration. Additionally, as noted in Sec-
tion I, Z-ordering creates an implicit volume-like space.
Some volume-based techniques from scientific visualization
maybe more directly applicable by more literally applying
this metaphor.

VIII. CONCLUSIONS

Visualizing large data sets inevitably runs into overplot-
ting issues. By considering the rendering process as binning,
Abstract Rendering provides a means to unify many over-
plotting techniques. Furthermore, those techniques can be
encoded succinctly at compile time and executed efficiently
at runtime.

REFERENCES

[1] S. K. Card, J. Mackinlay, and B. Shneiderman, Readings in
Information Visualization: Using Vision to Think. Morgan
Kaufman, 1999.

[2] M. Bostock and J. Heer, “Protovis: A graphical toolkit
for visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 6, pp. 1121–1128, 2009.

[3] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-
Driven Documents,” IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2011. [Online]. Available: http:
//vis.stanford.edu/papers/d3

[4] J. A. Cottam, “Design and implementation of a stream-based
visualization language,” Ph.D. dissertation, Indiana Univer-
sity, 2011.

[5] L. Wilkinson, The Grammar of Graphics, 2nd ed. New York:
Springer-Verlag, 2005.

[6] H. Wickham, “A layered grammar of graphics,” Journal of
Computational and Graphical Statistics, vol. 19, no. 1, pp.
3–28, March 2010.

[7] G. S. Davidson, B. Hendrickson, D. K. Johnson, C. E.
Meyers, and B. N. Wylie, “Knowledge mining with VxIn-
sight: Discovery through interaction,” Journal of Intelligent
Information Systems, vol. 11, no. 3, pp. 259–285, 1998.

[8] J. A. Cottam and A. Lumsdaine, “Extended
assortitivity and the structure in the open source
development community,” in International Sunbelt Social
Network Conference. International Network for Social
Network Analysis, January 2008. [Online]. Available:
http://www.insna.org/PDF/Awards/awards ms 2007.pdf

[9] C. Muelder, F. Gygi, and K.-L. Ma, “Visual analysis of inter-
process communication for large-scale parallel computing,”
IEEE Transactions on Visualization and Computer Graphics,
vol. 15, no. 6, pp. 1129–1136, Nov. 2009. [Online].
Available: http://dx.doi.org/10.1109/TVCG.2009.196

[10] “National Historical Geographic Information System: Version
2.0,” University of Minnesota, Minneapolis, MN, 2011.
[Online]. Available: http://www.nhgis.org

[11] T. Porter and T. Duff, “Compositing digital images,”
SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 253–259,
Jan. 1984. [Online]. Available: http://doi.acm.org/10.1145/
964965.808606

[12] J. Johansson, P. Ljung, M. Jern, and M. Cooper, “Revealing
structure within clustered parallel coordinates displays,” in
Proceedings of the Proceedings of the 2005 IEEE Symposium
on Information Visualization, ser. INFOVIS ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 17–. [Online].
Available: http://dx.doi.org/10.1109/INFOVIS.2005.30

[13] H. Hagh-Shenas, V. Interrante, C. Healey, and S. Kim,
“Weaving versus blending: a quantitative assessment of
the information carrying capacities of two alternative
methods for conveying multivariate data with color,” in
Proceedings of the 3rd symposium on Applied perception
in graphics and visualization, ser. APGV ’06. New York,
NY, USA: ACM, 2006, pp. 164–164. [Online]. Available:
http://doi.acm.org/10.1145/1140491.1140541

[14] T. E. Oliphant, Guide to NumPy, Provo, UT, Mar. 2006.
[Online]. Available: http://www.tramy.us/

[15] Z. Liu, B. Jiang, and J. Heer, “immens: Real-time
visual querying of big data,” Computer Graphics Forum
(Proc. EuroVis), vol. 32, 2013. [Online]. Available: http:
//vis.stanford.edu/papers/immens

[16] J. W. Tukey and P. A. Tukey, “Computer Graphics and
Exploratory Data Analysis: An Introduction,” in Proceedings
of the Sixth Annual Conference and Exposition: Computer
Graphics. Fairfax, VA: Nat. Computer Graphics Association,
1985, pp. 773–785.

[17] A. Dasgupta and R. Kosara, “Pargnostics: Screen-space
metrics for parallel coordinates,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, no. 6,
pp. 1017–1026, Nov. 2010. [Online]. Available: http:
//dx.doi.org/10.1109/TVCG.2010.184

http://vis.stanford.edu/papers/d3
http://vis.stanford.edu/papers/d3
http://www.insna.org/PDF/Awards/awards_ms_2007.pdf
http://dx.doi.org/10.1109/TVCG.2009.196
http://www.nhgis.org
http://doi.acm.org/10.1145/964965.808606
http://doi.acm.org/10.1145/964965.808606
http://dx.doi.org/10.1109/INFOVIS.2005.30
http://doi.acm.org/10.1145/1140491.1140541
http://www.tramy.us/
http://vis.stanford.edu/papers/immens
http://vis.stanford.edu/papers/immens
http://dx.doi.org/10.1109/TVCG.2010.184
http://dx.doi.org/10.1109/TVCG.2010.184

	Introduction
	Abstract Rendering
	Dataset
	Simple Example: Select, Aggregate, Transfer
	The Info Function
	Formalization

	Example Abstract Rendering Encodings
	Overplotting
	Selection-set Rendering
	Uniqueness in Neighborhood
	Homogeneous Alpha Compositing
	High-definition Alpha Compositing
	Color Weaving

	Applications
	Memory Access Patterns
	Network Adjacency

	Implementation
	Performance
	Future Work
	Conclusions
	References

